Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
J Enzyme Inhib Med Chem ; 39(1): 2330907, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38651823

RESUMO

Antimicrobial resistance (AMR) is a pressing global issue exacerbated by the abuse of antibiotics and the formation of bacterial biofilms, which cause up to 80% of human bacterial infections. This study presents a computational strategy to address AMR by developing three novel quantitative structure-activity relationship (QSAR) models based on molecular topology to identify potential anti-biofilm and antibacterial agents. The models aim to determine the chemo-topological pattern of Gram (+) antibacterial, Gram (-) antibacterial, and biofilm formation inhibition activity. The models were applied to the virtual screening of a commercial chemical database, resulting in the selection of 58 compounds. Subsequent in vitro assays showed that three of these compounds exhibited the most promising antibacterial activity, with potential applications in enhancing food and medical device safety.


Assuntos
Antibacterianos , Biofilmes , Desenho de Fármacos , Testes de Sensibilidade Microbiana , Relação Quantitativa Estrutura-Atividade , Biofilmes/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/síntese química , Estrutura Molecular , Humanos , Contaminação de Alimentos/prevenção & controle , Relação Dose-Resposta a Droga
2.
J Agric Food Chem ; 72(5): 2482-2491, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38264997

RESUMO

In a previously published study, the authors devised a molecular topology QSAR (quantitative structure-activity relationship) approach to detect novel fungicides acting as inhibitors of chitin deacetylase (CDA). Several of the chosen compounds exhibited noteworthy activity. Due to the close relationship between chitin-related proteins present in fungi and other chitin-containing plant-parasitic species, the authors decided to test these molecules against nematodes, based on their negative impact on agriculture. From an overall of 20 fungal CDA inhibitors, six showed to be active against Caenorhabditis elegans. These experimental results made it possible to develop two new molecular topology-based QSAR algorithms for the rational design of potential nematicides with CDA inhibitor activity for crop protection. Linear discriminant analysis was employed to create the two algorithms, one for identifying the chemo-mathematical pattern of commercial nematicides and the other for identifying nematicides with activity on CDA. After creating and validating the QSAR models, the authors screened several natural and synthetic compound databases, searching for alternatives to current nematicides. Finally one compound, the N2-(dimethylsulfamoyl)-N-{2-[(2-methyl-2-propanyl)sulfanyl]ethyl}-N2-phenylglycinamide or nematode chitin deacetylase inhibitor, was selected as the best candidate and was further investigated both in silico, through molecular docking and molecular dynamic simulations, and in vitro, through specific experimental assays. The molecule shows favorable binding behavior on the catalytic pocket of C. elegans CDA and the experimental assays confirm potential nematicide activity.


Assuntos
Amidoidrolases , Caenorhabditis elegans , Nematoides , Animais , Caenorhabditis elegans/metabolismo , Simulação de Acoplamento Molecular , Antinematódeos/química , Quitina/metabolismo
3.
J Fungi (Basel) ; 9(7)2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37504759

RESUMO

Fungal pathogens are significant plant-destroying microorganisms that present an increasing threat to the world's crop production. Chitin is a crucial component of fungal cell walls and a conserved MAMP (microbe-associated molecular pattern) that can be recognized by specific plant receptors, activating chitin-triggered immunity. The molecular mechanisms underlying the perception of chitin by specific receptors are well known in plants such as rice and Arabidopsis thaliana and are believed to function similarly in many other plants. To become a plant pathogen, fungi have to suppress the activation of chitin-triggered immunity. Therefore, fungal pathogens have evolved various strategies, such as prevention of chitin digestion or interference with plant chitin receptors or chitin signaling, which involve the secretion of fungal proteins in most cases. Since chitin immunity is a very effective defensive response, these fungal mechanisms are believed to work in close coordination. In this review, we first provide an overview of the current understanding of chitin-triggered immune signaling and the fungal proteins developed for its suppression. Second, as an example, we discuss the mechanisms operating in fungal biotrophs such as powdery mildew fungi, particularly in the model species Podosphaera xanthii, the main causal agent of powdery mildew in cucurbits. The key role of fungal effector proteins involved in the modification, degradation, or sequestration of immunogenic chitin oligomers is discussed in the context of fungal pathogenesis and the promotion of powdery mildew disease. Finally, the use of this fundamental knowledge for the development of intervention strategies against powdery mildew fungi is also discussed.

4.
Int J Mol Sci ; 24(10)2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37240427

RESUMO

Powdery mildew and rust fungi are major agricultural problems affecting many economically important crops and causing significant yield losses. These fungi are obligate biotrophic parasites that are completely dependent on their hosts for growth and reproduction. Biotrophy in these fungi is determined by the presence of haustoria, specialized fungal cells that are responsible for nutrient uptake and molecular dialogue with the host, a fact that undoubtedly complicates their study under laboratory conditions, especially in terms of genetic manipulation. RNA interference (RNAi) is the biological process of suppressing the expression of a target gene through double-stranded RNA that induces mRNA degradation. RNAi technology has revolutionized the study of these obligate biotrophic fungi by enabling the analysis of gene function in these fungal. More importantly, RNAi technology has opened new perspectives for the management of powdery mildew and rust diseases, first through the stable expression of RNAi constructs in transgenic plants and, more recently, through the non-transgenic approach called spray-induced gene silencing (SIGS). In this review, the impact of RNAi technology on the research and management of powdery mildew and rust fungi will be addressed.


Assuntos
Basidiomycota , Doenças das Plantas , Interferência de RNA , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Basidiomycota/genética , Inativação Gênica , RNA de Cadeia Dupla/genética , Erysiphe
5.
J Agric Food Chem ; 70(41): 13118-13131, 2022 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-36194443

RESUMO

Fungicide resistance is a major concern in modern agriculture; therefore, there is a pressing demand to develop new, greener chemicals. Chitin is a major component of the fungal cell wall and a well-known elicitor of plant immunity. To overcome chitin recognition, fungal pathogens developed different strategies, with chitin deacetylase (CDA) activity being the most conserved. This enzyme is responsible for hydrolyzing the N-acetamido group in N-acetylglucosamine units of chitin to convert it to chitosan, a compound that can no longer be recognized by the plant. In previous works, we observed that treatments with CDA inhibitors, such as carboxylic acids, reduced the symptoms of cucurbit powdery mildew and induced rapid activation of chitin-triggered immunity, indicating that CDA could be an interesting target for fungicide development. In this work, we developed an in silico strategy based on QSAR (quantitative structure-activity relationship) and molecular topology (MT) to discover new, specific, and potent CAD inhibitors. Starting with the chemical structures of few carboxylic acids, with and without disease control activity, three predictive equations based on the MT paradigm were developed to identify a group of potential molecules. Their fungicidal activity was experimentally tested, and their specificity as CDA inhibitors was studied for the three best candidates by molecular docking simulations. To our knowledge, this is the first time that MT has been used for the identification of potential CDA inhibitors to be used against resistant powdery mildew strains. In this sense, we consider of special interest the discovery of molecules capable of stimulating the immune system of plants by triggering a defensive response against fungal species that are highly resistant to fungicides such as powdery mildew.


Assuntos
Quitosana , Fungicidas Industriais , Doenças das Plantas/microbiologia , Fungicidas Industriais/farmacologia , Acetilglucosamina , Simulação de Acoplamento Molecular , Quitina/farmacologia , Agricultura , Ácidos Carboxílicos
6.
J Fungi (Basel) ; 8(10)2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36294587

RESUMO

Phytopathogenic fungi have evolved mechanisms to manipulate plant defences, such as chitin-triggered immunity, a plant defensive response based on the recognition of chitin oligomers by plant-specific receptors. To cope with chitin resistance, fungal pathogens have developed different strategies to prevent chitin recognition, such as binding, breaking, or modifying immunogenic oligomers. In powdery mildew fungi, the activity of chitin deacetylase (CDA) is crucial for this purpose, since silencing of the CDA gene leads to a rapid activation of chitin signalling and the subsequent suppression of fungal growth. In this work, we have identified an unusually short CDA transcript in Podosphaera xanthii, the cucurbit powdery mildew pathogen. This transcript, designated PxCDA3, appears to encode a truncated version of CDA resulting from an alternative splicing of the PxCDA gene, which lacked most of the chitin deacetylase activity domain but retained the carbohydrate-binding module. Experiments with the recombinant protein showed its ability to bind to chitin oligomers and prevent the activation of chitin signalling. Furthermore, the use of fluorescent fusion proteins allowed its localization in plant papillae at pathogen penetration sites. Our results suggest the occurrence of a new fungal chitin-binding effector, designated CHBE, involved in the manipulation of chitin-triggered immunity in powdery mildew fungi.

7.
J Fungi (Basel) ; 7(12)2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-34946992

RESUMO

Fungicide resistance is a serious problem for agriculture. This is particularly apparent in the case of powdery mildew fungi. Therefore, there is an urgent need to develop new agrochemicals. Chitin is a well-known elicitor of plant immunity, and fungal pathogens have evolved strategies to overcome its detection. Among these strategies, chitin deacetylase (CDA) is responsible for modifying immunogenic chitooligomers and hydrolysing the acetamido group in the N-acetylglucosamine units to avoid recognition. In this work, we tested the hypothesis that CDA can be an appropriate target for antifungals using the cucurbit powdery mildew pathogen Podosphaera xanthii. According to our hypothesis, RNAi silencing of PxCDA resulted in a dramatic reduction in fungal growth that was linked to a rapid elicitation of chitin-triggered immunity. Similar results were obtained with treatments with carboxylic acids such as EDTA, a well-known CDA inhibitor. The disease-suppression activity of EDTA was not associated with its chelating activity since other chelating agents did not suppress disease. The binding of EDTA to CDA was confirmed by molecular docking studies. Furthermore, EDTA also suppressed green and grey mould-causing pathogens applied to oranges and strawberries, respectively. Our results conclusively show that CDA is a promising target for control of phytopathogenic fungi and that EDTA could be a starting point for fungicide design.

8.
J Fungi (Basel) ; 7(9)2021 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-34575771

RESUMO

Powdery mildew is caused by Podosphaera xanthii, and is one of the most important diseases that attacks Spanish cucurbit crops. Fungicide application is the primary control tool; however, its effectiveness is hampered by the rapid development of resistance to these compounds. In this study, the EC50 values of 26 isolates were determined in response to the succinate dehydrogenase inhibitor (SDHI) fungicides boscalid and fluopyram. From these data, the discriminatory doses were deduced and used for SDHI resistance monitoring during the 2018 and 2019 growing seasons. Of the 298 isolates analysed, 37.9% showed resistance to boscalid and 44% to fluopyram. Although different phenotypes were observed in leaf disc assays, the resistant isolates showed the same phenotype in plant assays. Compared to sensitive isolates, two amino acid changes were found in the SdhC subunit, A86V and G151R, which are associated mostly with resistance patterns to fluopyram and boscalid, respectively. Furthermore, no significant differences were observed in terms of fitness cost between the selected sensitive and resistant isolates analysed here. Lastly, a loop-mediated isothermal amplification (LAMP) assay was developed to detect A86V and G151R mutations using conidia obtained directly from infected material. Our results show that growers could continue to use boscalid and fluopyram, but resistance management practices must be implemented.

9.
J Fungi (Basel) ; 7(9)2021 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-34575773

RESUMO

The powdery mildew fungus Podosphaera xanthii is one of the most important limiting factors for cucurbit production worldwide. Despite the significant efforts made by breeding and chemical companies, effective control of this pathogen remains elusive to growers. In this work, we examined the suitability of RNAi technology called spray-induced gene silencing (SIGS) for controlling cucurbit powdery mildew. Using leaf disc and cotyledon infiltration assays, we tested the efficacy of dsRNA applications to induce gene silencing in P. xanthii. Furthermore, to identify new target candidate genes, we analyzed sixty conserved and non-annotated proteins (CNAPs) deduced from the P. xanthii transcriptome in silico. Six proteins presumably involved in essential functions, specifically respiration (CNAP8878, CNAP9066, CNAP10905 and CNAP30520), glycosylation (CNAP1048) and efflux transport (CNAP948), were identified. Functional analysis of these CNAP coding genes by dsRNA-induced gene silencing resulted in strong silencing phenotypes with large reductions in fungal growth and disease symptoms. Due to their important contributions to fungal development, the CNAP1048, CNAP10905 and CNAP30520 genes were selected as targets to conduct SIGS assays under plant growth chamber conditions. The spray application of these dsRNAs induced high levels of disease control, supporting that SIGS could be a sustainable approach to combat powdery mildew diseases.

10.
Mol Plant Pathol ; 22(5): 580-601, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33742545

RESUMO

Podosphaera xanthii is the main causal agent of cucurbit powdery mildew and a limiting factor of crop productivity. The lifestyle of this fungus is determined by the development of specialized parasitic structures inside epidermal cells, termed haustoria, that are responsible for the acquisition of nutrients and the release of effectors. A typical function of fungal effectors is the manipulation of host immunity, for example the suppression of pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI). Chitin is a major component of fungal cell walls, and chitin oligosaccharides are well-known PAMP elicitors. In this work, we examined the role of PHEC27213, the most highly expressed, haustorium-specific effector candidate of P. xanthii. According to different computational predictions, the protein folding of PHEC27213 was similar to that of lytic polysaccharide monooxygenases (LPMOs) and included a conserved histidine brace; however, PHEC27213 had low sequence similarity with LPMO proteins and displayed a putative chitin-binding domain that was different from the canonical carbohydrate-binding module. Binding and enzymatic assays demonstrated that PHEC27213 was able to bind and catalyse colloidal chitin, as well as chitooligosaccharides, acting as an LPMO. Furthermore, RNAi silencing experiments showed the potential of this protein to prevent the activation of chitin-triggered immunity. Moreover, proteins with similar features were found in other haustorium-forming fungal pathogens. Our results suggest that this protein is a new fungal LPMO that catalyses chitooligosaccharides, thus contributing to the suppression of plant immunity during haustorium development. To our knowledge, this is the first mechanism identified in the haustorium to suppress chitin signalling.


Assuntos
Ascomicetos/enzimologia , Quitina/análogos & derivados , Quitina/imunologia , Cucurbita/microbiologia , Oxigenases de Função Mista/metabolismo , Doenças das Plantas/microbiologia , Ascomicetos/genética , Ascomicetos/fisiologia , Quitosana , Cucurbita/imunologia , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Oxigenases de Função Mista/genética , Modelos Moleculares , Simulação de Acoplamento Molecular , Oligossacarídeos , Moléculas com Motivos Associados a Patógenos/imunologia , Doenças das Plantas/imunologia , Imunidade Vegetal , Transdução de Sinais
11.
Mol Plant Microbe Interact ; 34(3): 319-324, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33141618

RESUMO

Podosphaera xanthii is the main causal agent of powdery mildew in cucurbits and, arguably, the most important fungal pathogen of cucurbit crops. Here, we present the first reference genome assembly for P. xanthii. We performed a hybrid genome assembly, using reads from Illumina NextSeq550 and PacBio Sequel S3. The short and long reads were assembled into 1,727 scaffolds with an N50 size of 163,173 bp, resulting in a 142-Mb genome size. The combination of homology-based and ab initio predictions allowed the prediction of 14,911 complete genes. Repetitive sequences comprised 76.2% of the genome. Our P. xanthii genome assembly improves considerably the molecular resources for research on P. xanthii-cucurbit interactions and provides new opportunities for further genomics, transcriptomics, and evolutionary studies in powdery mildew fungi.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Ascomicetos , Biologia Computacional , Cucurbita , Genoma de Planta , Ascomicetos/genética , Cucurbita/microbiologia , Doenças das Plantas/genética , Doenças das Plantas/microbiologia
12.
Microorganisms ; 8(9)2020 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-32957583

RESUMO

Powdery mildew fungi (Erysiphales) are among the most common and important plant fungal pathogens. These fungi are obligate biotrophic parasites that attack nearly 10,000 species of angiosperms, including major crops, such as cereals and grapes. Although cultural and biological practices may reduce the risk of infection by powdery mildew, they do not provide sufficient protection. Therefore, in practice, chemical control, including the use of fungicides from multiple chemical groups, is the most effective tool for managing powdery mildew. Unfortunately, the risk of resistance development is high because typical spray programs include multiple applications per season. In addition, some of the most economically destructive species of powdery mildew fungi are considered to be high-risk pathogens and are able to develop resistance to several chemical classes within a few years. This situation has decreased the efficacy of the major fungicide classes, such as sterol demethylation inhibitors, quinone outside inhibitors and succinate dehydrogenase inhibitors, that are employed against powdery mildews. In this review, we present cases of reduction in sensitivity, development of resistance and failure of control by fungicides that have been or are being used to manage powdery mildew. In addition, the molecular mechanisms underlying resistance to fungicides are also outlined. Finally, a number of recommendations are provided to decrease the probability of resistance development when fungicides are employed.

13.
Nat Commun ; 11(1): 1859, 2020 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-32313019

RESUMO

Bacteria can form biofilms that consist of multicellular communities embedded in an extracellular matrix (ECM). In Bacillus subtilis, the main protein component of the ECM is the functional amyloid TasA. Here, we study further the roles played by TasA in B. subtilis physiology and biofilm formation on plant leaves and in vitro. We show that ΔtasA cells exhibit a range of cytological symptoms indicative of excessive cellular stress leading to increased cell death. TasA associates to the detergent-resistant fraction of the cell membrane, and the distribution of the flotillin-like protein FloT is altered in ΔtasA cells. We propose that, in addition to a structural function during ECM assembly and interactions with plants, TasA contributes to the stabilization of membrane dynamics as cells enter stationary phase.


Assuntos
Proteínas Amiloidogênicas/metabolismo , Bacillus/fisiologia , Proteínas de Bactérias/metabolismo , Proteínas Amiloidogênicas/genética , Bacillus subtilis/metabolismo , Aderência Bacteriana , Proteínas de Bactérias/genética , Biofilmes , Morte Celular , Membrana Celular/metabolismo , Cucurbitaceae/microbiologia , Ecologia , Lipopeptídeos , Mutação , Transcriptoma
14.
BMC Genomics ; 20(1): 543, 2019 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-31272366

RESUMO

BACKGROUND: Podosphaera xanthii is the main causal agent of powdery mildew disease in cucurbits and is responsible for important yield losses in these crops worldwide. Powdery mildew fungi are obligate biotrophs. In these parasites, biotrophy is determined by the presence of haustoria, which are specialized structures of parasitism developed by these fungi for the acquisition of nutrients and the delivery of effectors. Detailed molecular studies of powdery mildew haustoria are scarce due mainly to difficulties in their isolation. Therefore, their analysis is considered an important challenge for powdery mildew research. The aim of this work was to gain insights into powdery mildew biology by analysing the haustorial transcriptome of P. xanthii. RESULTS: Prior to RNA isolation and massive-scale mRNA sequencing, a flow cytometric approach was developed to isolate P. xanthii haustoria free of visible contaminants. Next, several commercial kits were used to isolate total RNA and to construct the cDNA and Illumina libraries that were finally sequenced by the Illumina NextSeq system. Using this approach, the maximum amount of information from low-quality RNA that could be obtained was used to accomplish the de novo assembly of the P. xanthii haustorial transcriptome. The subsequent analysis of this transcriptome and comparison with the epiphytic transcriptome allowed us to identify the importance of several biological processes for haustorial cells such as protection against reactive oxygen species, the acquisition of different nutrients and genetic regulation mediated by non-coding RNAs. In addition, we could also identify several secreted proteins expressed exclusively in haustoria such as cell adhesion proteins that have not been related to powdery mildew biology to date. CONCLUSIONS: This work provides a novel approach to study the molecular aspects of powdery mildew haustoria. In addition, the results of this study have also allowed us to identify certain previously unknown processes and proteins involved in the biology of powdery mildews that could be essential for their biotrophy and pathogenesis.


Assuntos
Ascomicetos/genética , Ascomicetos/patogenicidade , Proteínas Fúngicas/genética , Ascomicetos/isolamento & purificação , Cucurbita/microbiologia , DNA Complementar , Citometria de Fluxo , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Ontologia Genética , Interações Hospedeiro-Patógeno/genética , Doenças das Plantas/microbiologia , Conformação Proteica , Transcriptoma
15.
Sci Rep ; 9(1): 7978, 2019 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-31138852

RESUMO

The cucurbit powdery mildew elicited by Podosphaera xanthii is one of the most important limiting factors in cucurbit production. Our knowledge of the genetic and molecular bases underlying the physiological processes governing this disease is very limited. We used RNA-sequencing to identify differentially expressed genes in leaves of Cucumis melo upon inoculation with P. xanthii, using RNA samples obtained at different time points during the early stages of infection and their corresponding uninfected controls. In parallel, melon plants were phenotypically characterized using imaging techniques. We found a high number of differentially expressed genes (DEGs) in infected plants, which allowed for the identification of many plant processes that were dysregulated by the infection. Among those, genes involved in photosynthesis and related processes were found to be upregulated, whereas genes involved in secondary metabolism pathways, such as phenylpropanoid biosynthesis, were downregulated. These changes in gene expression could be functionally validated by chlorophyll fluorescence imaging and blue-green fluorescence imaging analyses, which corroborated the alterations in photosynthetic activity and the suppression of phenolic compound biosynthesis. The powdery mildew disease in melon is a consequence of a complex and multifaceted process that involves the dysregulation of many plant pathways such as primary and secondary metabolism.


Assuntos
Ascomicetos/genética , Cucumis melo/genética , Regulação Fúngica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Interações Hospedeiro-Patógeno/genética , RNA Fúngico/genética , Ascomicetos/crescimento & desenvolvimento , Ascomicetos/patogenicidade , Clorofila/metabolismo , Cucumis melo/metabolismo , Cucumis melo/microbiologia , Perfilação da Expressão Gênica , Ontologia Genética , Sequenciamento de Nucleotídeos em Larga Escala , Anotação de Sequência Molecular , Imagem Óptica , Fenóis/metabolismo , Fotossíntese/genética , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Folhas de Planta/genética , Folhas de Planta/metabolismo , Folhas de Planta/microbiologia , Propanóis/metabolismo , Metabolismo Secundário
16.
Plant Dis ; 103(7): 1515-1524, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31059385

RESUMO

Powdery mildew, caused by the fungus Podosphaera xanthii, is one of the most economically important diseases affecting cucurbit crops in Spain. Currently, chemical control offers the most efficient management of the disease; however, P. xanthii isolates resistant to multiple classes of site-specific fungicides have been reported in the Spanish cucurbit powdery mildew population. In previous studies, resistance to the fungicides known as methyl benzimidazole carbamates (MBCs) was found to be caused by the amino acid substitution E198A on ß-tubulin. To detect MBC-resistant isolates in a faster, more efficient, and more specific way than the traditional methods used to date, a loop-mediated isothermal amplification (LAMP) system was developed. In this study, three sets of LAMP primers were designed. One set was designed for the detection of the wild-type allele and two sets were designed for the E198A amino acid change. Positive results were only obtained with both mutant sets; however, LAMP reaction conditions were only optimized with primer set 2, which was selected for optimal detection of the E198A amino acid change in P. xanthii-resistant isolates, along with the optimal temperature and duration parameters of 65°C for 75 min, respectively. The hydroxynaphthol blue (HNB) metal indicator was used for quick visualization of results through the color change from violet to sky blue when the amplification was positive. HNB was added before the amplification to avoid opening the lids, thus decreasing the probability of contamination. To confirm that the amplified product corresponded to the ß-tubulin gene, the LAMP product was digested with the enzyme LweI and sequenced. Our results show that the LAMP technique is a specific and reproducible method that could be used for monitoring MBC resistance of P. xanthii directly in the field.


Assuntos
Ascomicetos , Farmacorresistência Fúngica , Doenças das Plantas , Ascomicetos/efeitos dos fármacos , Ascomicetos/genética , Ascomicetos/fisiologia , Benzimidazóis/farmacologia , Carbamatos/farmacologia , Técnicas de Amplificação de Ácido Nucleico , Espanha
17.
BMC Bioinformatics ; 19(Suppl 14): 416, 2018 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-30453874

RESUMO

BACKGROUND: The advances in high-throughput sequencing technologies are allowing more and more de novo assembling of transcriptomes from many new organisms. Some degree of automation and evaluation is required to warrant reproducibility, repetitivity and the selection of the best possible transcriptome. Workflows and pipelines are becoming an absolute requirement for such a purpose, but the issue of assembling evaluation for de novo transcriptomes in organisms lacking a sequenced genome remains unsolved. An automated, reproducible and flexible framework called TransFlow to accomplish this task is described. RESULTS: TransFlow with its five independent modules was designed to build different workflows depending on the nature of the original reads. This architecture enables different combinations of Illumina and Roche/454 sequencing data, and can be extended to other sequencing platforms. Its capabilities are illustrated with the selection of reliable plant reference transcriptomes and the assembling six transcriptomes (three case studies for grapevine leaves, olive tree pollen, and chestnut stem, and other three for haustorium, epiphytic structures and their combination for the phytopathogenic fungus Podosphaera xanthii). Arabidopsis and poplar transcriptomes revealed to be the best references. A common result regarding de novo assemblies is that Illumina paired-end reads of 100 nt in length assembled with OASES can provide reliable transcriptomes, while the contribution of longer reads is noticeable only when they complement a set of short, single-reads. CONCLUSIONS: TransFlow can handle up to 181 different assembling strategies. Evaluation based on principal component analyses allows its self-adaptation to different sets of reads to provide a suitable transcriptome for each combination of reads and assemblers. As a result, each case study has its own behaviour, prioritises evaluation parameters, and gives an objective and automated way for detecting the best transcriptome within a pool of them. Sequencing data type and quantity (preferably several hundred millions of 2×100 nt or longer), assemblers (OASES for Illumina, MIRA4 and EULER-SR reconciled with CAP3 for Roche/454) and strategy (preferably scaffolding with OASES, and probably merging with Roche/454 when available) arise as the most impacting factors.


Assuntos
Análise de Sequência de RNA , Software , Transcriptoma/genética , Pareamento de Bases/genética , Fungos/genética , Perfilação da Expressão Gênica , Plantas/genética , Análise de Componente Principal , Reprodutibilidade dos Testes , Fluxo de Trabalho
18.
Mol Plant Pathol ; 19(11): 2502-2515, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30073764

RESUMO

A major limitation of molecular studies in powdery mildew fungi (Erysiphales) is their genetic intractability. This is because they are obligate biotrophs. In these parasites, biotrophy is determined by the presence of haustoria, which are specialized structures of parasitism that play an essential role in the acquisition of nutrients and the deliverance of effectors. Podosphaera xanthii is the main causal agent of cucurbit powdery mildew and a major limitation for crop productivity. In a previous study using P. xanthii conidia, we showed, for the first time, the transformation of powdery mildew fungi by Agrobacterium tumefaciens. In this work, we hypothesized that the haustorium could also act as a natural route for the acquisition of DNA. To test our hypothesis, melon cotyledons were agro-infiltrated with A. tumefaciens that contained diverse transfer DNA (T-DNA) constructs harbouring different marker genes under the control of fungal promoters and, after elimination of the bacterium, the cotyledons were subsequently inoculated with P. xanthii conidia. Our results conclusively demonstrated the transfer of different T-DNAs from A. tumefaciens to P. xanthii, including two fungicide resistance markers (hph and tub2), a reporter gene (gfp) and a translational fusion (cfp-PxEC2). These results were further supported by the co-localization of translational fluorescent fusions of A. tumefaciens VirD2 and P. xanthii Rab5 proteins into small vesicles of haustorial and hyphal cells, suggesting endocytosis as the mechanism for T-DNA uptake, presumably by the haustorium. From our perspective, transformation by growth onto agro-infiltrated tissues (TGAT) is the easiest and most reliable method for the transient transformation of powdery mildew fungi.


Assuntos
Agrobacterium tumefaciens/crescimento & desenvolvimento , Ascomicetos/fisiologia , Cucurbita/genética , Cucurbita/microbiologia , Doenças das Plantas/microbiologia , Transformação Genética , Núcleo Celular/metabolismo , Endocitose , Endossomos/metabolismo , Proteínas Fúngicas/metabolismo , Fenótipo
19.
Sci Rep ; 8(1): 7161, 2018 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-29740047

RESUMO

Methyl benzimidazole carbamate (MBC) fungicides are fungicidal compounds that exert their biological activities by preventing cell division through the inhibition of tubulin polymerization, which is the major component of microtubules. Several mutations in the ß-tubulin gene contribute to MBC resistance, the most common and significant of which occur at residues 198 and 200. Despite nearly 50 years of agricultural use, the binding site of MBCs and the precise mechanism by which those mutations affect fungicide efficacy have not been determined. The aim of this work was to clarify the mode of action and the mechanism of resistance to MBC fungicides in Podosphaera xanthii, the primary causal agent of cucurbit powdery mildew, using a combination of biochemical, biophysical and computational approaches. The results allow us to propose an MBC binding site in ß-tubulin that lies close to the GTP binding site and does not include residue 198 involved in MBC resistance.


Assuntos
Benzimidazóis/química , Carbamatos/química , Farmacorresistência Fúngica/genética , Fungicidas Industriais/farmacologia , Doenças das Plantas/prevenção & controle , Tubulina (Proteína)/genética , Ascomicetos/efeitos dos fármacos , Ascomicetos/genética , Ascomicetos/patogenicidade , Benzimidazóis/efeitos adversos , Benzimidazóis/farmacologia , Sítios de Ligação/efeitos dos fármacos , Carbamatos/farmacologia , Farmacorresistência Fúngica/efeitos dos fármacos , Fungicidas Industriais/efeitos adversos , Fungicidas Industriais/química , Doenças das Plantas/microbiologia , Ligação Proteica/efeitos dos fármacos , Tubulina (Proteína)/química
20.
Mol Plant Microbe Interact ; 31(9): 914-931, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29513627

RESUMO

Podosphaera xanthii is the main causal agent of powdery mildew disease in cucurbits. In a previous study, we determined that P. xanthii expresses approximately 50 Podosphaera effector candidates (PECs), identified based on the presence of a predicted signal peptide and the absence of functional annotation. In this work, we used host-induced gene silencing (HIGS), employing Agrobacterium tumefaciens as a vector for the delivery of the silencing constructs (ATM-HIGS), to identify genes involved in early plant-pathogen interaction. The analysis of seven selected PEC-encoding genes showed that six of them, PEC007, PEC009, PEC019, PEC032, PEC034, and PEC054, are required for P. xanthii pathogenesis, as revealed by reduced fungal growth and increased production of hydrogen peroxide by host cells. In addition, protein models and protein-ligand predictions allowed us to identify putative functions for these candidates. The biochemical activities of PEC019, PEC032, and PEC054 were elucidated using their corresponding proteins expressed in Escherichia coli. These proteins were confirmed as phospholipid-binding protein, α-mannosidase, and cellulose-binding protein. Further, BLAST searches showed that these three effectors are widely distributed in phytopathogenic fungi. These results suggest novel targets for fungal effectors, such as host-cell plasma membrane, host-cell glycosylation, and damage-associated molecular pattern-triggered immunity.


Assuntos
Ascomicetos/patogenicidade , Cucurbitaceae/microbiologia , Proteínas Fúngicas/metabolismo , Interações Hospedeiro-Patógeno , Modelos Moleculares , Doenças das Plantas/microbiologia , Agrobacterium tumefaciens/genética , Ascomicetos/genética , Cucurbitaceae/imunologia , Proteínas Fúngicas/genética , Inativação Gênica , Vetores Genéticos/genética , Doenças das Plantas/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...